Esteya Vermicola, a Nematophagous Fungus Attacking the Pine Wood Nematode, Harbors a Bacterial Endosymbiont Affiliated with Gammaproteobacteria
نویسندگان
چکیده
Symbioses have played pivotal roles in biological, ecological, and evolutionary diversification. Symbiotic bacteria affect the biology of hosts in a number of ways. Esteya vermicola, an endoparasitic nematophagous fungus, has high infectivity in the pine wood nematode (PWN), which causes devastating ecological damage and economic losses in Asia and Europe. An integration of molecular, phylogenetic, and morphological analyses revealed that surface-sterilized E. vermicola with septate hyphae from different geographic locations harbor bacterial endosymbionts. 16S rRNA gene sequences from four fungal strains all clustered in a well-supported monophyletic clade that was the most closely related to Pseudomonas stutzeri and affiliated with Gammaproteobacteria. The existence and intracellular location of endobacteria was revealed by fluorescent in situ hybridization (FISH). Our results showed that endobacteria were coccoid, vertically inherited, as yet uncultured, and essential symbionts. Ultrastructural observations indicated that young and old endobacteria differed in cell size, cell wall thickness, and the degree of reproduction. The results of the present study provide a fundamental understanding of the endobacteria inside E. vermicola and raise questions regarding the impact of endobacteria on the biology, ecology, and evolution of their fungal host.
منابع مشابه
Host Deception: Predaceous Fungus, Esteya vermicola, Entices Pine Wood Nematode by Mimicking the Scent of Pine Tree for Nutrient
BACKGROUND A nematophagous fungus, Esteya vermicola, is recorded as the first endoparasitic fungus of pine wood nematode (PWN), Bursaphelenchus xylophilus, in last century. E. vermicola exhibited high infectivity toward PWN in the laboratory conditions and conidia spraying of this fungus on Japanese red pine, Pinus densiflora, seedlings in the field protected the pine trees from pine wilt disea...
متن کاملEsteya vermicola Controls the Pinewood Nematode, Bursaphelenchus xylophilus, in Pine Seedlings.
Esteya vermicola (Ophiostomataceae) is an endoparasitic fungus that has great potential as a biological control agent against the pinewood nematode Bursaphelenchus xylophilus which causes pine wilt disease. We tested E. vermicola for control of pine wilt disease by spraying E. vermicola conidia on artificial wounds on pine seedlings, and the optimum E. vermicola treatment density and applicatio...
متن کاملScreening of Soil and Sheep Faecal Samples for Predacious Fungi: Isolation and Characterization of the Nematode-Trapping Fungus Arthrobotrys oligospora
Over one-year period, 150 pasture soil samples and 138 sheep faecal samples, collected from different parts of Iran were screened for the presence of nematophagous fungi. The samples were cultured at 25ºC on chloramphenicol-2% water agar (CHF-WA) plates in the presence of Haemonchus contortus third stage larvae (L3) and checked over a two-month period for characteristic conidia, conidiophores a...
متن کاملBiocontroh Fungal Parasites of Female Cyst Nematodes 1
Three species of fungi, Catenaria auxiliarls (Kiihn) Tribe, Nematophthora gynophila Kerry and Crump, and a Lagenidiaceous fungus have been found attacking female cyst nematodes. All are zoosporic fungi which parasitize females on the root surface, cause the breakdown of the nematode cuticle, and prevent cyst formation. Their identification and some aspects of their biology are reviewed. N. gyno...
متن کاملAcanthocytes of Stropharia rugosoannulata function as a nematode-attacking device.
Efficient killing of nematodes by Stropharia rugosoannulata Farlow ex Murrill cultures was observed. This fungus showed the ability to immobilize the free-living nematode Panagrellus redivivus Goodey within minutes and to immobilize the pine wilt nematode Bursaphelenchus xylophilus (Steiner & Buhrer) Nickle within hours on agar plates. Moreover, P. redivivus worms were completely degraded by th...
متن کامل